
by: NXP Semiconductors

1 Introduction
The LPC54608 is a family of Arm® Cortex®-M4 based microcontrollers used
in embedded applications. As more and more embedded applications require
Graphical User Interfaces (GUI), more GUI tools are introduced to developers.
Crank Storyboard is a powerful GUI development suite. Storyboard Engine
is the runtime component that delivers the content developed in Storyboard
Designer to embedded devices.

This application note demonstrates how to integrate Storyboard engine to
LPC54608 base on freeRTOS.

2 Creating an application by Storyboard
designer

2.1 Storyboard designer description
Storyboard Designer enables UI designers to easily prototype the look and feel of a product and then deploy the prototype
to an embedded target. Designers maintain full control over the UI without having to perform a hand off to an engineer
for implementation.

2.2 Creating an application

2.2.1 Creating a new Storyboard Designer project
Create a new project and configure the parameters from the hardware.

Figure 1. LCD parameter configurations

2.2.2 Adding assets to the application and create screens
To display different contents, we can create different screens with different assets, such as images, controls, and so on.

Contents

1 Introduction......................................1
2 Creating an application by Storyboard

designer...1
2.1 Storyboard designer description

...1
2.2 Creating an application................ 1
3 Porting Storyboard Engine to

LPC54608....................................... 4
3.1 Hardware description...................4
3.2 Crank software library..................4
3.3 Installing SDK for LPC54608 from

NXP..4
3.4 Integrating Crank Storyboard

engine to freertos_hello project....4

AN13110
LPC54608 Crank Storyboard Engine Integration with IAR
Rev. 0 — January 15, 2021 Application Note

In this application, there are two screens.

• screen_meter_start is shown after the system starts up, as shown in Figure 2.

Figure 2. Screen_meter_start

• screen_meter_stop is shown after running from screen_meter_start, as shown in Figure 3.

Figure 3. Screen_meter_stop

2.2.3 Creating pointer rotation animation
In the demonstration, when users click start button, the pointer will point from 0 to 180, and the Start button will change to the
Pause button. If users click the Pause button, the pointer will point from 180 to 0. So we shall create two animations to display the
pointer rotation.

It’s very easy to create animation by Storyboard Designer.

1. Click Animation -> Start Recording New Animation to start and modify the rotation angle from -150 to 150.

2. Click Animation -> Stop Recording Animation to stop and save the new animation.

3. Click Preview Animation in Animation Timeline to preview.

4. Follow the same steps to create the second animation, and the only difference is the pointer rotation angle changes
from 150 to -150.

2.2.4 Adding action to buttons
Add animation to press button action. If the button is pressed, it will call the animation created above.

NXP Semiconductors
Creating an application by Storyboard designer

LPC54608 Crank Storyboard Engine Integration with IAR, Rev. 0, January 15, 2021
Application Note 2 / 13

Figure 4. Add animation to Control button

Figure 5. Add screen transition to Control button

2.2.5 Adding actions to animation events
In this application, click the Play button, and the pointer starts to rotate and the Play button canges to Pause button. Then, click
the Pause button, and the pointer rotates to 0 and the Pause button changes to Play button.

To implement this feature, add actions to animation complete events.

Figure 6. Add actions to animation events

Figure 7. Add Screen Transition to Animation_start animation complete

NXP Semiconductors
Creating an application by Storyboard designer

LPC54608 Crank Storyboard Engine Integration with IAR, Rev. 0, January 15, 2021
Application Note 3 / 13

2.2.6 Application export
So far, the demonstration Storyboard application is done. Click Run -> Storyboard Application Export and select Packager ->
Storyboard Embedded Resource Header (c/c++) to generate a header file named sbengine_model.h, which will be used in
LPC54608 project.

3 Porting Storyboard Engine to LPC54608

3.1 Hardware description
The LPC54608-EVK development board is designed to enable evaluation of and prototyping with the LPC54608 MCU
devices leveraging the high-performance Arm Cotex-M4 core and the advanced security capabilities featured in the LPC54608
MCU family.

• 128 Mb MX25L12835FM2I-10G Quad-SPI flash

• Winbond 128 Mb W9812G6JB-6I SDRAM

• 480×272 capacitive touch TFT LCD screen

3.2 Crank software library
User who want to re-produce this application can access CRANK to get the library for Cortex-M4.

3.3 Installing SDK for LPC54608 from NXP
Create an NXP online account before downloading NXP SDK. You can create your account through the Dashboard tool and it is
customizable for a particular IDE.

1. Configure and download the latest SDK (current 2.8.2 for LPC54628) from the Dashboard tool. Select the LPC54628
from the list of boards and then build the SDK for that board.

2. Request the IAR IDE for the SDK.

3. Be sure to include Amazon Freertos and emWIN for the SDK.

4. Download SDK.

3.4 Integrating Crank Storyboard engine to freertos_hello project

3.4.1 Porting LCD and Touch drivers
To display GUI content, initialize the LCD and its touch feature.

• Add fsl_lcdc.c and fsl_lcdc.h to driver group to initialize LCD controller.

• Add fsl_i2c.c and fsl_i2c.h to driver group to access touch chip of LCD.

• Add fsl_sctimer.c and fsl_sctimer.h to driver group to create PWM for LCD.

• Add a new group named fsl_ft5406 which includes fsl_ft5406.c and fsl_ft5406.h.

• Add fsl_ft5406 directory to Project -> Options -> C/C++ Compiler -> Preprocessor -> Additional include directories.

• Create peripheral.c and peripheral.h to implement initialization functions for LCD and touch. And add these two files to
project.

3.4.2 Crank Storyboard engine integration
• Copy freertos-iar-cortexm4-swrender-obj released by Crank to the project root.

• Create new group named sbengine for Crank Storyboard engine.

NXP Semiconductors
Porting Storyboard Engine to LPC54608

LPC54608 Crank Storyboard Engine Integration with IAR, Rev. 0, January 15, 2021
Application Note 4 / 13

http://www.cranksoftware.com
https://mcuxpresso.nxp.com/en/dashboard

Figure 8. New groups for Crank Storyboard engine

• Add all files located in freertos-iar-cortexm4-swrender-obj\src\lib\greal\freertos to greal_src group.

• Add all files except libgreal.a located in freertos-iar-cortexm4-swrender-obj\lib to lib group.

• Add all files located in freertos-iar-cortexm4-swrender-obj\plugins to plugins group.

• Drag and drop the Storyboard engine template files from:

freertos-iar-cortexm4-swrender-obj\src\sbengine_freertos\sbengine_task.c

freertos-iar-cortexm4-swrender-obj\src\sbengine_freertos\sbengine_plugins.h

to the source folders in the project:

boards\lpcxpresso54628\rtos_examples\freertos_hello \sbengine_task.c

boards\lpcxpresso54628\rtos_examples\freertos_hello \sbengine_plugins.h

• Add all the including path/directories to the project for Storyboard engine.

Figure 9. Including paths/directories

• Add defined symbols to Object -> Options -> C/C++ Compiler -> Defined symbols.

FSL_RTOS_FREE_RTOS
GRE_TARGET_CPU_cortexm4
GRE_TARGET_TOOLCHAIN_iar
GRE_TARGET_OS_freertos
GRE_ENABLE_STATIC_PLUGINS
GRE_FEATURE_VFS_RESOURCES

NXP Semiconductors
Porting Storyboard Engine to LPC54608

LPC54608 Crank Storyboard Engine Integration with IAR, Rev. 0, January 15, 2021
Application Note 5 / 13

• Copy sbengine_model.h created by Storyboard Designer at to the source folder in the project.

• Configure for freertos.

— Set FreeRTOSConfig.h options:

#define configFRTOS_MEMORY_SCHEME 3
#define configUSE_TIME_SLICING 1
#define configENABLE_BACKWARD_COMPATIBILITY 1
#define configTICK_RATE_HZ ((TickType_t)1000)

— Replace heap_4.c by heap_3.c.

• Add sbengine_main_task() definition and task creation in freertos_hello.c.

1. Place the definition below just after the define for the hello_task_PRIORITY.

void sbengine_main_task(void *argument);

2. Replace the Hello_task code:

if (xTaskCreate(hello_task, "Hello_task", configMINIMAL_STACK_SIZE + 10,
NULL, hello_task_PRIORITY, NULL) != pdPASS)

3. Replace with sbengine_main_task creation code.

if (xTaskCreate(sbengine_main_task, "sbengine", 4096, NULL,
configMAX_PRIORITIES / 2, NULL) != pdPASS)

• Add initialization functions call to freertos_hello.c.

1. Ensure that the following headers are included in freertos_hello.c.

#include "peripheral.h"

2. Add cock and peripheral initialization functions as below:

int main(void)
{

/* Init board hardware. */
/* attach 12 MHz clock to FLEXCOMM0 (debug console) */
CLOCK_AttachClk(BOARD_DEBUG_UART_CLK_ATTACH);

/* Route Main clock to LCD. */
CLOCK_AttachClk(kMAIN_CLK_to_LCD_CLK);
CLOCK_SetClkDiv(kCLOCK_DivLcdClk, 1, true);
/* attach 12 MHz clock to FLEXCOMM2 (I2C master for touch controller) */
CLOCK_AttachClk(kFRO12M_to_FLEXCOMM2);
CLOCK_EnableClock(kCLOCK_Gpio2);

BOARD_InitPins();
BOARD_BootClockPLL180M();
BOARD_InitDebugConsole();
BOARD_InitSDRAM();
BOARD_InitPeripheral();
if(xTaskCreate(sbengine_main_task, "sbengine", 4096, NULL, hello_task_PRIORITY, NULL) !=

pdPASS)
{

PRINTF("Task creation failed!.\r\n");
while (1)

;

NXP Semiconductors
Porting Storyboard Engine to LPC54608

LPC54608 Crank Storyboard Engine Integration with IAR, Rev. 0, January 15, 2021
Application Note 6 / 13

 }
 vTaskStartScheduler();
 for (;;)
 ;
}

• Update sbengine_task.c.

1. Add including header files.

#include "gre.h"
#include "iodefs.h"
#include "generic_display.h"
#include "greal.h"
#include "peripheral.h"
#include "fsl_lcdc.h"

2. Add global variables definition.

gr_generic_display_layer_info_t main_layer;
gr_application_t *app;

3. Delete the gr_application_t *app; definition located in run_storyboard_app().

4. Implement the int gr_generic_display_init() function as below:

int
gr_generic_display_init(gr_generic_display_info_t *info) {
 info->num_layers = 1;
 main_layer.num_buffers = 2;
 info->layer_info = &main_layer;

 main_layer.buffer[0] = (void *)(VRAM_ADDR);
#if(LCD_BITS_PER_PIXEL == 16)
 main_layer.render_format = GR_RENDER_FMT_RGB565;
#elif(LCD_BITS_PER_PIXEL == 32)
 main_layer.render_format = GR_RENDER_FMT_ARGB8888;
#endif
 main_layer.width = 480;
 main_layer.height = 272;
 main_layer.stride = (uint16_t)(main_layer.width *
GR_RENDER_FMT_BYTESPP(main_layer.render_format));
 main_layer.buffer[1] = (void *)(VRAM_ADDR + VRAM_SIZE);
 return 0;
}

5. Implement the int gr_generic_display_update() function as below:

int
gr_generic_display_update(const gr_generic_display_info_t *info) {
 s_frame_done = false;
 LCDC_SetPanelAddr(BOARD_LCD, kLCDC_UpperPanel, (uint32_t)info->layer_info[0].buffer[info-
>layer_info[0].buffer_draw_index]);
 while(s_frame_done == false);
 return 0;
}

NXP Semiconductors
Porting Storyboard Engine to LPC54608

LPC54608 Crank Storyboard Engine Integration with IAR, Rev. 0, January 15, 2021
Application Note 7 / 13

• Update sbengine_plugins.h.

// gre plugins
extern int gre_plugin_animate(gr_plugin_state_t *);
//extern int gre_plugin_captureplayback(gr_plugin_state_t *);
extern int gre_plugin_logger(gr_plugin_state_t *);
extern int gre_plugin_timer(gr_plugin_state_t *);
extern int gre_plugin_greio(gr_plugin_state_t *);

// Render extension plugins
extern int gre_plugin_circle(gr_plugin_state_t *);
extern int gre_plugin_poly(gr_plugin_state_t *);
extern int gre_plugin_script_lua(gr_plugin_state_t *);
extern int gre_plugin_c_callback(gr_plugin_state_t *);
extern int gre_plugin_screen_path(gr_plugin_state_t *);

const gr_plugin_create_func_t sb_plugins[] = {
 gre_plugin_animate,
 gre_plugin_greio,
 gre_plugin_c_callback,
 //gre_plugin_circle,
 //gre_plugin_screen_path,
 gre_plugin_logger,
 //gre_plugin_poly,
 //gre_plugin_script_lua,
 gre_plugin_timer,
 NULL,
};

• Update __heap_size__ defined in the linker file.

1. Find the linker file as shown in Figure 10.

Figure 10. Linker configuration file

NXP Semiconductors
Porting Storyboard Engine to LPC54608

LPC54608 Crank Storyboard Engine Integration with IAR, Rev. 0, January 15, 2021
Application Note 8 / 13

2. Click the button to open the folder and edit the linker configuration file, LPC54628J512_flash.icf.

3. Change the __heap_size__ to 13000.

if (isdefinedsymbol(__heap_size__)) {
define symbol __size_heap__ = __heap_size__;
} else {
define symbol __size_heap__ = 1024*1024;

}

4. Place HEAP to SDRAM.

Figure 11. Place heap to SDRAM region

• Modify the linker file to allocate some lib file to SPIFI flash.

Figure 12. Code linker file configuration

• Compile the project and test.

— If there is no error after the compile, users can download the image to LPC54608 EVK to test it. The LCD can display
the meter and the button, as shown in Figure 13.

NXP Semiconductors
Porting Storyboard Engine to LPC54608

LPC54608 Crank Storyboard Engine Integration with IAR, Rev. 0, January 15, 2021
Application Note 9 / 13

Figure 13. Meter and button display on LCD

— Without the support of the touch feature, the button on the LCD can not work.

3.4.3 Touch task implementation
The touch chip, ft5406, is initialized in BOARD_InitPeripheral() located in peripheral.c. Implement the touch task to support the
touch feature.

Place the following function to poll for input from the touch screen and push the resulting event in to the Storyboard event queue.

void sbengine_input_task(void *arg)
{
 const int sleep_msec = 20;
 greal_timespec_t sleep_time = {
 .tv_sec = 0,
 .tv_nsec = sleep_msec * 1000000
 };

#if defined(APP_USE_STORYBOARD_IO)
 gr_key_event_t key_event = { 0, GR_KEY_ENTER, 0};

 /* initialise GPIO for USER LED and Button */
 BOARD_InitUserGPIO();
#endif

 touch_poll_state_t previous_touch_state = {0};
 touch_poll_state_t touch_state;
 bool pressed = false;

 while (1) {
 if (kStatus_Success != BOARD_Touch_Poll(&touch_state)) {
 greal_nanosleep(&sleep_time, NULL);

NXP Semiconductors
Porting Storyboard Engine to LPC54608

LPC54608 Crank Storyboard Engine Integration with IAR, Rev. 0, January 15, 2021
Application Note 10 / 13

 continue;
 }

 // De-bounce inputs
 if (previous_touch_state.x == touch_state.x &&
 previous_touch_state.y == touch_state.y &&
 previous_touch_state.pressed == touch_state.pressed) {
 greal_nanosleep(&sleep_time, NULL);
 continue;
 }

 if (touch_state.pressed) {
 gr_ptr_event_t event = {
 // No, this isn't a typo. The axes are literally inverted at the driver level.
 .x = touch_state.y,
 .y = touch_state.x,
 .z = 1,
 .timestamp = gr_snapshot_app_time(app),
 };

 if (pressed) {
 gr_application_send_event(app, NULL, GR_EVENT_MOTION, GR_EVENT_PTR_FMT, &event,
sizeof(event));
 } else {
 pressed = true;
 gr_application_send_event(app, NULL, GR_EVENT_PRESS, GR_EVENT_PTR_FMT, &event,
sizeof(event));
 }

 previous_touch_state = touch_state;
 } else if (pressed) {
 gr_ptr_event_t event = {
 // No, this isn't a typo. The axes are literally inverted at the driver level.
 .x = previous_touch_state.y,
 .y = previous_touch_state.x,
 .z = 1,
 .timestamp = gr_snapshot_app_time(app),
 };

 pressed = false;
 gr_application_send_event(app, NULL, GR_EVENT_RELEASE, GR_EVENT_PTR_FMT, &event,
sizeof(event));
 previous_touch_state = touch_state;
 }

 greal_nanosleep(&sleep_time, NULL);
 }
}

Add the touch task creation in freertos_hello.c.

if(xTaskCreate(sbengine_input_task, "touch task", 2048, NULL, hello_task_PRIORITY-1, NULL) != pdPASS)
{
 PRINTF("Task creation failed!.\r\n");
 while (1)
 ;
}

NXP Semiconductors
Porting Storyboard Engine to LPC54608

LPC54608 Crank Storyboard Engine Integration with IAR, Rev. 0, January 15, 2021
Application Note 11 / 13

3.4.4 Compile and download
Compile and download the project to LPC54608 EVB and run. The LCD displays the meter screen. Press the Play button and the
pointer will rotate.

NXP Semiconductors
Porting Storyboard Engine to LPC54608

LPC54608 Crank Storyboard Engine Integration with IAR, Rev. 0, January 15, 2021
Application Note 12 / 13

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There
are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor
does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided
in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application by customer's technical
experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to
standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this
document, including without limitation specifications and product descriptions, at any time and without notice. This
document supersedes and replaces all information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to reduce
the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other
open and/or proprietary technologies supported by NXP products for use in customer’s applications. NXP accepts no
liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately.
Customer shall select products with security features that best meet rules, regulations, and standards of the intended
application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all
legal, regulatory, and security related requirements concerning its products, regardless of any information or support that
may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com)
that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP,
HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX,
MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG,
TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy
Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ
Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are
trademarks of NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,
ULINK-ME, ULINK-PLUS, ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The
Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.

© NXP B.V. 2021. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: January 15, 2021
Document identifier: AN13110

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	2 Creating an application by Storyboard designer
	2.1 Storyboard designer description
	2.2 Creating an application
	2.2.1 Creating a new Storyboard Designer project
	2.2.2 Adding assets to the application and create screens
	2.2.3 Creating pointer rotation animation
	2.2.4 Adding action to buttons
	2.2.5 Adding actions to animation events
	2.2.6 Application export

	3 Porting Storyboard Engine to LPC54608
	3.1 Hardware description
	3.2 Crank software library
	3.3 Installing SDK for LPC54608 from NXP
	3.4 Integrating Crank Storyboard engine to freertos_hello project
	3.4.1 Porting LCD and Touch drivers
	3.4.2 Crank Storyboard engine integration
	3.4.3 Touch task implementation
	3.4.4 Compile and download

